

CASE STUDY: Intelli SMS

CASE STUDY

Building Heavy Load Messaging System

About IntelliSMS

Intelli Messaging simplifies mobile communication methods so you can cost

effectively build mobile communication into your business processes;

Marketing or Operations. Whether you are an application provider,

telecommunication services company or a large business we have the service

and application offerings to support your needs.

About SoftwareMill

SoftwareMill, Typesafe Consulting partner, is a software house based in

Poland that specializes in delivering customized software solutions. Their

clients come from the telecommunications, banking, logistics and

entertainment industries.

A wide range of systems can be found in their portfolio, starting from

high-performance mobile application backends, through fault-tolerant

messaging gateways, big-data reporting and credit management systems.

The Challenge

IntelliSMS is present on the SMS market for a long time, since the year 2000,

and through the years evolved to offer a wide range of SMS-related services:

● a wholesale enterprise SMS gateway,

● bulk and individual SMS sends,

● account and billing management for resellers,

● REST API for integrating with applications,

● 2-way SMS - replying to unique messages,

and many others. A couple generations of the MessageCore platform, backing

the above mentioned services, were developed.

© 2014 SoftwareMill
hello@softwaremill.com

http://www.google.com/url?q=http%3A%2F%2Fintellisms.com.au%2F&sa=D&sntz=1&usg=AFQjCNFO30T1LKoBr3h3ido0rJY-GLKjpg
https://www.google.com/url?q=https%3A%2F%2Fsoftwaremill.com%2F&sa=D&sntz=1&usg=AFQjCNGn95yLoybnIWmAmsjtzRlr2VT3xg

CASE STUDY: Intelli SMS

The previous system, MessageCore4 (MC4), worked well in the beginning, but

as more and more customers signed up and message volumes increased

scalability problems started to surface, which hindered the business. Also, the

code base grew large and hard to maintain, due to a number of features

being added and removed over the years.

That’s when IntelliSMS turned to SoftwareMill to take part in developing the

next generation system, MC5. The core requirements were to create a

scalable architecture which would accommodate the increasing messaging

volume.

Another important requirement was for the messaging to be reliable. A large

part of the messaging traffic is alert messaging, so it is vital that the

messages are not lost. Combining a replicated, persistent message storage,

which will deliver messages even in case of a downstream service not being

available or a server crashing permanently, with the scalability and

performance requirements, provided a challenging task for our team to work

on.

When creating the new system, an important factor was to maintain a clean,

extendable code base, where new features can be implemented and plugged

in relatively quickly, without a need to alter existing code in a significant way.

© 2014 SoftwareMill
hello@softwaremill.com

CASE STUDY: Intelli SMS

The Solution

We started by drafting a system architecture. While we are strong believers

in the Agile methodologies of developing and delivering software, and we try

to minimize the amount of upfront planning and design, some planning is

always necessary, to roughly guide the development. A good architecture

allows the team to meet the basic system requirements, while being flexible

enough to allow specific design decisions to be made as late as possible.

The architecture of MC5 assumed dividing the system into a number of

independent components:

● a submission server, where users submitted sms send request, and queries

for sms status

● workers, which through a series of pluggable handlers provided message

routing, billing, reacting to reply SMS messages

● SMSC communication servers, which send the messages downstream to

specific SMS providers

● reporting servers, to provide statistics and insights into SMS sending/delivery

pattern

© 2014 SoftwareMill
hello@softwaremill.com

CASE STUDY: Intelli SMS

Each component is independent, can be scaled independently, and doesn’t

have to work at the same time as the other components. This is especially

important for the SMSC communication servers, which connect to third-party

providers; such links are inherently unreliable, and can go up and down

unpredictably.

The components are written using pure Java; some of them are deployed in a

servlet container, but most as stand-alone, fat-jars, which allows for easy

management and fast provisioning. This adds to the simplicity of the system,

which results in a lower operations and maintenance overhead.

The components communicate asynchronously through a persistent,

replicated message queue. The queue implementation is pluggable, and

currently we are using a custom solution based on MongoDB. As we are also

using MongoDB for other purposes, and as MongoDB is great both because of

the ease of installation, use and performance for streaming, replicated

operations, it was a natural choice.

Our Mongo-based queue easily handles thousands of persistent, replicated

messages per second, and can be scaled using the Starling/Kestrel model, by

adding new sets of replicated nodes and using a random set of nodes when

sending/receiving messages.

Apart from messaging, the system needs to persist SMS information at each

stage of processing the message: when the SMS is accepted for sending,

routed, delivered, and finally billed. This forms a natural stream of events,

which get persisted to a Mongo collection. Not only we are able to handle

very large volume of events efficiently (each event is immutable, so the

Mongo collection is essentially append-only), but we get a clear audit trail for

each message, in case we need to debug the system behavior.

Finally, the reporting system uses SQL database, which is populated using

event sourcing from the Mongo collections. This can also be done efficiently,

thanks to how Mongo works and the immutable, streaming nature of events.

© 2014 SoftwareMill
hello@softwaremill.com

CASE STUDY: Intelli SMS

An SQL database was chosen for reporting because of the familiarity of the

system users with the language and the flexibility in forming queries, and

getting responses quickly.

Designing for performance and scalability is one thing, making sure the

system is actually performant and scalable is another. That is why one of the

first tasks we completed, after a skeleton of the system was done, was setting

up an overnight, automated stress test, where the system was sending and

receiving simulated SMS messages over 4 hours. This let us iron out many

integration issues, on the Operating System, Load Balancer, Mongo and

application levels. As the test runs each day, after a day of work we quickly

know when we have degraded the system’s performance.

As mentioned in the introduction, code quality and maintainability was key

when developing the project. We are using a number of now standard

methods, like (fast) unit and (slower) integration tests, adhering to “clean

code” rules, paying attention to naming, keeping classes small, with a single

responsibility and so on. Each change is also code-reviewed by other team

members, both to catch bugs and design flows, but also to spread the

knowledge about the system.

Remote project delivery

But technology isn’t everything. Equally, if not more important is the way

teams collaborate to deliver software. As IntelliSMS is based in Melbourne,

Australia, and SoftwareMill in Warsaw, Poland, we formed a truly distributed

team (SoftwareMill is additionally a fully distributed company, our employees

come from many parts of the country), working remotely across two quite

different time zones.

We tried to keep the formalism of our cooperation as low as possible. When it

seemed beneficial, we use tools such as TinyPM or Confluence. We had no

strict requirement documents, instead we tried to communicate as frequently

as possible to deliver what will be the highest value for IntelliSMS, and hence

the highest value for IntelliSMS users. That way we could adapt quickly based

on the continuously gathered feedback.

© 2014 SoftwareMill
hello@softwaremill.com

CASE STUDY: Intelli SMS

Moreover, at SoftwareMill we have a number of proven methods for effective

asynchronous and synchronous communication in a distributed setup. In the

end the fact that we work remotely was barely noticeable.

The Result

The system is in production for almost two years now; it has proved to work

well under load, and the architecture met the original requirements. The code

base is kept in a good shape, allowing existing developers to modify the code

quickly and new developers to join the project without problems.

We have delivered a performant and resilient SMS platform, which can be

scaled to meet future traffic demands, and evolved to include new features, to

meet emerging business needs.

With a very difficult development task with some very high benchmarks SoftwareMill

has delivered a great result and done so very cost effectively.

- Peter Humphries, Executive Director at Intelli Messaging.

Contact

We take your mind off software development. Just drop us a line:

hello@softwaremill.com - we’ll get back to you!

SoftwareMill delivers custom software solutions: web applications, back­end systems and enterprise solutions. We specialize in Java,
Scala and Cloud technologies with particular interest in JBoss, Amazon Web Services and Big Data projects. We develop software
solutions with care and strong belief in the agile approach.

© 2014 SoftwareMill
hello@softwaremill.com

mailto:hello@softwaremill.com
https://www.google.com/url?q=https%3A%2F%2Fsoftwaremill.com%2F&sa=D&sntz=1&usg=AFQjCNGn95yLoybnIWmAmsjtzRlr2VT3xg

